
1 - 10 Inner product
Let a = {1, -3, 5}, b={4, 0, 8}, c = {-2, 9, 1}

1.  a.b, b.a, b.c

ClearAll["Global`*⋆"]

aa = {1, -−3, 5}; bb = {4, 0, 8}; cc = {-−2, 9, 1}

{-−2, 9, 1}

e1 = aa.bb

44

e2 = bb.aa

44

e3 = bb.cc

0

3.  |a|, |2b|, |-c|

Norm[aa]

35

Norm[2 bb]

8 5

Norm[-−cc]

86

5.  |b + c|, |b| + |c|

e7 = Norm[bb + cc]

166



e8 = Norm[bb] + Norm[cc]

4 5 + 86

e9 = FullSimplify[e7 ⩵ e8]

False

7. | a.c |, | a || c |

e10 = Norm[aa.cc]

24

e11 = Norm[aa] Norm[cc]

3010

9.  15a.b + 15a.c, 15a.(b+c)

e12 = 15 aa.bb + 15 aa.cc

300

e13 = 15 aa.(bb + cc)

300

17 - 20 Work
Find the work done by a force p acting on a body if the body is displaced along the 
straight segment AB from A to B. Sketch AB and p.

17. p = {2, 5, 0}, A: {1, 3, 3}, B: {3, 5, 5}

ClearAll["Global`*⋆"]

aA = {1, 3, 3}; bB = {3, 5, 5}

{3, 5, 5}

pP = {2, 5, 0}

{2, 5, 0}

dis = bB -− aA

{2, 2, 2}
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wW = dis.pP

14

cosinealpha = N
wW

Norm[dis] Norm[pP]


0.750479

alpha = ArcCos[cosinealpha]

0.72201

Mathematica doesn’t like to use degrees, but one way to get there is
1.

Degree

57.2958

% alpha

41.3681

The above way of calculating the work moves everything into the frame of reference of the 
origin. However, the problem description requested a view of  AB, so that is drawn in red.

Note: drawing arcs in Mathematica's 3D plot is not very easy. I found several recommended 
methods on line, but finally just flogged an approximated arc out of Blender.

19. p = {0, 4, 3}, A: {4, 5, -1}, B: (1, 3, 0}

ClearAll["Global`*⋆"]

pP = {0, 4, 3}; aA = {4, 5, -−1}; bB = {1, 3, 0}

{1, 3, 0}

9.2 Inner Product (Dot Product) 361.nb     3



dis = bB -− aA

{-−3, -−2, 1}

wW = dis.pP

-−5

cosinealpha = N
wW

Norm[dis] Norm[pP]


-−0.267261

alpha = ArcCos[cosinealpha]

1.84135

1.

Degree

57.2958

% alpha

105.501

The requested sketch is shown.

22 - 30 Angle between vectors
Let aA = {1, 1, 0}; bB = {3, 2, 1}; cC = {1, 0, 2}

23.  b, c

dotbc = bB.cC

5

e1 =
dotbc

Norm[bB] Norm[cC]
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5

14
/∕/∕ N

0.597614

e2 = ArcCos[e1]

ArcCos
5

14
 /∕/∕ N

0.930274

e3 =
e2

Degree
/∕/∕ N

53.3008

31 - 35 Orthogonality is particularly important, mainly because of orthogonal coordi-
nates, such as Cartesian coordinates, whose natural basis consists of three orthogonal 
unit vectors.

31.  For what values of a1 are {a1, 4, 3} and {3, -2, 12} orthogonal?

ClearAll["Global`*⋆"]

e1 = {a1, 4, 3}

{a1, 4, 3}

e2 = {3, -−2, 12}

{3, -−2, 12}

e3 = e1.e2

28 + 3 a1

Solve[e3 ⩵ 0]

a1 → -−
28

3


33. Unit vectors. Find all unit vectors a = {a1, a2} in the plane orthogonal to {4, 3}

ClearAll["Global`*⋆"]

e1 = {4, 3}

{4, 3}
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e2 = Norm[e1]

5

e3 = {a1, a2}

{a1, a2}

e4 = Norm[e3]

Abs[a1]2 + Abs[a2]2

e5 = Solve[e1.e3 ⩵ 0 && Norm[e3] ⩵ 1]

a1 →
3

5
, a2 → -−

4

5
, a1 → -−

3

5
, a2 →

4

5


36 - 40 Component in the direction of a vector
Find the component of a in the direction of b. Make a sketch.

37. a = {3, 4, 0}, b = {4, -3, 2}

ClearAll["Global`*⋆"]

To find the component of a in the direction of b, I first need to find the angle separating 
them.
e1 = {3, 4, 0}

{3, 4, 0}

e2 = {4, -−3, 2}

{4, -−3, 2}

e3 =
e1.e2

Norm[e1] Norm[e2]

0

e4 = ArcCos[e3]
π

2

These two vectors are perpendicular; therefore there is no projection (=0).
e5 = Norm[e1] Cos[e4]

0
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In a case like this, the component of b in a would normally be the projection of b onto a. 
Here however, the two vectors are perpendicular, so the projection (and the component), 
are zero. This graphic shows the arrowhead bug in Mathematica, talked about at https://com-
munity.wolfram.com/groups/-/m/t/1302365 and https://mathematica.stackexchange.com/question-
s/81306/arrowhead-becomes-unattached-to-line-in-a-graphics3d-manipulate?noredirect=1 and probably 
other places. In this case if the blue tube is not used, the arrowhead becomes detached and 
floats around outside the display cube.
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